Mixed Meshless Local Petrov-Galerkin Methods for Solving Linear Fourth-Order Differential Equations
نویسندگان
چکیده
منابع مشابه
The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations
The truly Meshless Local Petrov-Galerkin (MLPG) method is extended to solve the incompressible Navier-Stokes equations. The local weak form is modified in a very careful way so as to ovecome the so-called Babus̃ka-Brezzi conditions. In addition, The upwinding scheme as developed in Lin and Atluri (2000a) and Lin and Atluri (2000b) is used to stabilize the convection operator in the streamline di...
متن کاملMeshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction & Displacement Boundary Integral Equations
The general Meshless Local PetrovGalerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. These MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradie...
متن کاملSimple Test Functions in Meshless Local Petrov - Galerkin Methods
Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tes...
متن کاملThe Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations
Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of FAMENA
سال: 2020
ISSN: 1333-1124,1849-1391
DOI: 10.21278/tof.44101